Structures

Structure is a special case of inductive datatype. It has only one constructor and is not recursive. Similar to the inductive command, the structure command introduces a namespace with the same name. The general form is as follows:

structure <name> <parameters> <parent-structures> where <constructor-name> :: <fields>

Most parts are optional. Here is our first example.

structure Point (α : Type u) where x : α y : α

In the example above, the constructor name is not provided. So, the constructor is named mk by Lean. Values of type Point are created using Point.mk a b or { x := a, y := b : Point α }. The latter can be written as { x := a, y := b } when the expected type is known. The fields of a point p are accessed using Point.x p and Point.y p. You can also the more compact notation p.x and p.y as a shorthand for Point.x p and Point.y p.

structure Point (α : Type u) where x : α y : α #check Point #check Point -- Type u -> Type u #check @Point.mk -- {α : Type u} → α → α → Point α #check @Point.x -- {α : Type u} → Point α → α #check @Point.y -- {α : Type u} → Point α → α #check Point.mk 10 20 -- Point Nat #check { x := 10, y := 20 : Point Nat } -- Point Nat def mkPoint (a : Nat) : Point Nat := { x := a, y := a } #eval (Point.mk 10 20).x -- 10 #eval (Point.mk 10 20).y -- 20 #eval { x := 10, y := 20 : Point Nat }.x -- 10 #eval { x := 10, y := 20 : Point Nat }.y -- 20 def addXY (p : Point Nat) : Nat := p.x + p.y #eval addXY { x := 10, y := 20 } -- 30

In the notation { ... }, if the fields are in different lines, the , is optional.

structure Point (α : Type u) where x : α y : α def mkPoint (a : Nat) : Point Nat := { x := a y := a }

You can also use where instead of := { ... }.

structure Point (α : Type u) where x : α y : α def mkPoint (a : Nat) : Point Nat where x := a y := a

Here are some simple theorems about our Point type.

structure Point (α : Type u) where x : α y : α theorem ex1 (a b : α) : (Point.mk a b).x = a := rfl theorem ex2 (a b : α) : (Point.mk a b).y = b := rfl theorem ex3 (a b : α) : Point.mk a b = { x := a, y := b } := rfl

The dot notation is convenient not just for accessing the projections of a structure, but also for applying functions defined in a namespace with the same name. If p has type Point, the expression p.foo is interpreted as Point.foo p, assuming that the first argument to foo has type Point. The expression p.add q is therefore shorthand for Point.add p q in the example below.

structure Point (α : Type u) where x : α y : α def Point.add (p q : Point Nat) : Point Nat := { x := p.x + q.x, y := p.y + q.y } def p : Point Nat := Point.mk 1 2 def q : Point Nat := Point.mk 3 4 #eval (p.add q).x -- 4 #eval (p.add q).y -- 6

After we introduce type classes, we show how to define a function like add so that it works generically for elements of Point α rather than just Point Nat, assuming α has an associated addition operation.

More generally, given an expression p.foo x y z, Lean will insert p at the first argument to foo of type Point. For example, with the definition of scalar multiplication below, p.smul 3 is interpreted as Point.smul 3 p.

structure Point (α : Type u) where x : α y : α def Point.smul (n : Nat) (p : Point Nat) := Point.mk (n * p.x) (n * p.y) def p : Point Nat := Point.mk 1 2 #eval (p.smul 3).x -- 3 #eval (p.smul 3).y -- 6

Inheritance

We can extend existing structures by adding new fields. This feature allows us to simulate a form of inheritance.

structure Point (α : Type u) where x : α y : α inductive Color where | red | green | blue structure ColorPoint (α : Type u) extends Point α where color : Color #check { x := 10, y := 20, color := Color.red : ColorPoint Nat } -- { toPoint := { x := 10, y := 20 }, color := Color.red }

The output for the check command above suggests how Lean encoded inheritance and multiple inheritance. Lean uses fields to each parent structure.

structure Foo where x : Nat y : Nat structure Boo where w : Nat z : Nat structure Bla extends Foo, Boo where bit : Bool #check Bla.mk -- Foo → Boo → Bool → Bla #check Bla.mk { x := 10, y := 20 } { w := 30, z := 40 } true #check { x := 10, y := 20, w := 30, z := 40, bit := true : Bla } #check { toFoo := { x := 10, y := 20 }, toBoo := { w := 30, z := 40 }, bit := true : Bla } theorem ex : Bla.mk { x := x, y := y } { w := w, z := z } b = { x := x, y := y, w := w, z := z, bit := b } := rfl

Default field values

You can assign default value to fields when declaring a new structure.

inductive MessageSeverity | error | warning structure Message where fileName : String pos : Option Nat := none severity : MessageSeverity := MessageSeverity.error caption : String := "" data : String def msg1 : Message := { fileName := "foo.lean", data := "failed to import file" } #eval msg1.pos -- none #eval msg1.fileName -- "foo.lean" #eval msg1.caption -- ""

When extending a structure, you can not only add new fields, but provide new default values for existing fields.

inductive MessageSeverity | error | warning structure Message where fileName : String pos : Option Nat := none severity : MessageSeverity := MessageSeverity.error caption : String := "" data : String structure MessageExt extends Message where timestamp : Nat caption := "extended" -- new default value for field `caption` def msg2 : MessageExt where fileName := "bar.lean" data := "error at initialization" timestamp := 10 #eval msg2.fileName -- "bar.lean" #eval msg2.timestamp -- 10 #eval msg2.caption -- "extended"

Updating structure fields

Structure fields can be updated using { <struct-val> with <field> := <new-value>, ... }:

structure Point (α : Type u) where x : α y : α def incrementX (p : Point Nat) : Point Nat := { p with x := p.x + 1 }